

European Technical Assessment

ETA 12/0569 of 07/12/2022

(English language translation, the original version in Czech language)

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague

Trade name of the construction product Würth WIT-PM 200

Würth WIT-PM 200 express Würth WIT-PM 200 tropical

Product family to which the Product area code: 33

construction product belongsBonded injection type anchor for use in

uncracked concrete

Manufacturer Adolf Würth GmbH & Co. KG

Reinhold-Würth-Straße 12-17 74653 Künzelsau

Germany

Manufacturing plant(s) Plant 3, Germany

This European Technical Assessment 18 pages including 15 Annexes which form

contains an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation

EAD 330499-01-0601

Bonded fasteners for use in concrete

This version replaces ETA 12/0569 issued on 25/01/2016

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

(EU) No 305/2011, on the basis of

1. **Technical description of the product**

The Würth Injection System WIT-PM 200, WIT-PM 200 tropical and WIT-PM 200 express for uncracked concrete is a bonded anchor consisting of a cartridge with injection mortar and a steel element. The steel elements consists of a commercial threaded rods, a hexagon nut and a washer. The steel elements are made of galvanized steel or stainless steel.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	Annex C 1, C 2, C 3
(static and quasi-static loading)	Affilex C 1, C 2, C 3
Characteristic resistance to shear load	Annex C 1, C 4
(static and quasi-static loading)	Affilex C 1, C 4
Displacements under short term and long term loading	Annex C 5
Durability	Annex B 1
Characteristic resistance and displacements for seismic performance categories C1 and C2	NPA

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU)

No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the construction works) or heavy units	-	1

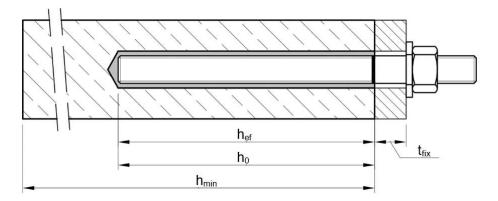
Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 07.12.2022

Ву


Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body

STAV STAV

The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Installation threaded rod M8 up to M24

prepositioned installation or push through installation (annular gap filled with mortar)

 t_{fix} = thickness of fixture

h_{ef} = effective embedment depthh_{min} = minimum thickness of member

 h_0 = depth of drill hole

Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical for concrete

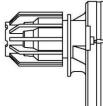
Product description Installed conditions

Annex A 1

Cartridge system

Coaxial Cartridge:

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml

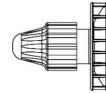

Imprint:

WIT-PM 200, express, tropical

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Side-by-Side Cartridge:

235 ml, 345 ml up to 360 ml and 825 ml


Imprint:

WIT-PM 200, express, tropical

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Foil Tube Cartridge:

165 ml and 300 ml

Imprint:

WIT-PM 200, express, tropical

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Static mixer CRW 14W, Fill & Clean

Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical for concrete

Product description

Injection system

Annex A 2

Threaded rod M8 up to M24 with washer and hexagon nut Mark of embedment depth h_{ef} (3) Commercial standard threaded rod with: Materials, dimensions and mechanical properties acc. Table A1 Inspection certificate 3.1 acc. to EN 10204:2004 Marking of embedment depth Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical for concrete Annex A 3 **Product description**

Threaded rod

art	a					
	Designation el, zinc plated (Steel acc.	Material	r ENI	10263-2001)		
- -	• •	μm acc. to EN ISO 404		,		
-				9 and EN ISO 10684:200	4+AC:2009 or	
-		μm acc. to EN ISO 176	68:20	16		
		Property class		Characteristic steel	Characteristic steel	Elongation a
		, ,	4.0	ultimate tensile strength f _{uk} = 400 N/mm²	f _{vk} = 240 N/mm ²	fracture
				1	y 1	A ₅ > 8%
1	Anchor rod	acc. to		f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%
			5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%
			8.8	f _{uk} = 800 N/mm ²	$f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8%
		acc. to	4	for anchor rod class 4.6	or 4.8	
2	Hexagon nut	EN ISO 898-2:2012	5	for anchor rod class 5.6	or 5.8	
	8 for anchor rod class 8.8					
3	Washer			alvanized or sherardized	7002-2000 as EN IC	7004-2000
Sta	inless stool A2 (Material	1 ()		I ISO 7089:2000, EN ISO 67 or 1.4541, acc. to EN		7094:2000)
				62 or 1.4541, acc. to EN		
				5, acc. to EN 10088-1: 20		
		Property class		Characteristic steel	Characteristic steel	Elongation a
		Froperty class		ultimate tensile strength		fracture
1	Anchor rod ¹⁾	acc. to EN ISO 3506-1:2009	50	f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²	A ₅ > 8%
			70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm²	A ₅ > 8%
		LIV 100 3300-1.2003	80	f _{uk} = 800 N/mm ²	f _{vk} = 600 N/mm ²	A ₅ > 8%
		4-	50	for anchor rod class 50	1 7	1
2	Hexagon nut1)	acc. to EN ISO 3506-1:2009	70	for anchor rod class 70		
			80	for anchor rod class 80		
				/ 1.4307 / 1.4567 or 1.45	•	
3	Washer			/ 1.4571 / 1.4362 or 1.45		4
				1565, acc. to EN 10088-1: I ISO 7089:2000, EN ISO		7004:2000)
1)	_l Property class 80 only for s	1, -			7093.2000 OF EN 130	7 7094.2000)
		S				
		/IT-PM 200, WIT-PM 20	0 exp	oress, WIT-PM 200 trop	ical	
for	concrete	/IT-PM 200, WIT-PM 20	0 exp	oress, WIT-PM 200 trop		
for Pr		/IT-PM 200, WIT-PM 20	0 exp	oress, WIT-PM 200 trop		nnex A 4

Specifications of intended use

Fasteners subject to (Static and quasi-static loads):

	Working lif	e 50 years	Working life	e 100 years
Base material	uncracked concrete	cracked concrete	uncracked concrete	cracked concrete
HD: Hammer drilling CD: Compressed air drilling	M8 to M24	No performance assessed	No performance assessed	No performance assessed
Temperature Range:	I: -40°C to	0 +40°C ¹⁾ 0 +80°C ²⁾	1000	o +40°C¹) o +80°C²)

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

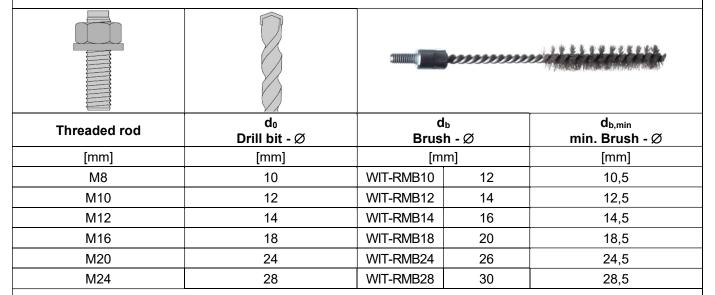
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.

Installation:


- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer drill (HD) or compressed air drill mode (CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical for concrete	
Intended use Specifications	Annex B 1

^{2) (}max. long-term temperature +50°C and max. short-term temperature +80°C)

Table B1: Installation parameters for threaded rod										
Anchor size					M10	M12	M16	M20	M24	
Diameter of element		$d = d_{nom}$	[mm]	8	10	12	16	20	24	
Nominal drill hole diame	ter	d_0	[mm]	10	12	14	18	24	28	
Effective and advant doubt		h _{ef,min}	[mm]	60	60	70	80	90	96	
Effective embedment de	pın	h _{ef,max}	[mm]	160	200	240	320	400	480	
Diameter of clearance	Prepositione	d installation d _f ≤		9	12	14	18	22	26	
hole in the fixture	Push throug	h installation d _f	[mm] 	12	14	16	20	24	30	
Maximum torque moment		max T _{inst} ≤	[Nm]	10	20	40	80	120	160	
Minimum thickness of member		h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀				
Minimum spacing		s _{min}	[mm]	40	50	60	80	100	120	
Minimum edge distance		c _{min}	[mm]	40	50	60	80	100	120	

Table B2: Parameter cleaning and installation tools

Cleaning and installation tools

Hand pump

(Volume 750 ml, $h_0 \ge 10 d_{nom}, d_0 \le 20 mm$)

Compressed air tool

(min 6 bar)

Brush WIT-RMB

Brush extension WIT-RMB-L

Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical for concrete

Intended use

Installation parameters

Parameter anchor and drill sizes, brushes, Cleaning and Installation tools

Annex B 2

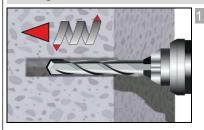
Tempera	ture in bas	e material	Maximum working time	Minimum curing time		
	Т		^t work	t _{cure}		
- 5 °C	to	- 1°C	90 min	6 h		
+ 0 °C	to	+ 4 °C	45 min	3 h		
+ 5°C	to	+ 9°C	25 min	2 h		
+ 10 °C	to	+ 14 °C	20 min	100 min		
+ 15°C	to	+ 19°C	15 min	80 min		
+ 20 °C	to	+ 29 °C	6 min	45 min		
+ 30 °C	to	+ 34 °C	4 min	25 min		
+ 35 °C	to	+ 39 °C	2 min	20 min		
Cartr	ridge tempe	erature	+5°C up to +40°C			

Table B4: Working and curing time WIT-PM 200 express

Temperature in base material		se material	Maximum working time	Minimum curing time		
	Т		^t work	t _{cure}		
- 10 °C	to	- 6°C	60 min	4 h		
- 5 °C	to	- 1°C	45 min	2 h		
+ 0 °C	to	+ 4 °C	25 min	80 min		
+ 5°C	to	+ 9°C	10 min	45 min		
+ 10 °C	to	+ 14 °C	4 min	25 min		
+ 15°C	to	+ 19°C	3 min	20 min		
+ 20 °C	to	+ 29 °C	2 min 15 min			
Cartr	idge tempe	erature	0°C up to +30°C			

Table B5: Working and curing time WIT-PM 200 tropical

Tempera	ture in bas	se material	Minimum curing time			
	Т		t _{work}	t _{cure}		
+ 10 °C	to	+ 14 °C	30 min	5 h		
+ 15°C	to	+ 19°C	20 min	210 min		
+ 20 °C	to	+ 29 °C	15 min	145 min		
+ 30 °C	to	+ 34 °C	10 min	80 min		
+ 35 °C	to	+ 39 °C	6 min	45 min		
+ 40 °C	to	+ 44 °C	4 min 25 min			
	+45°C		2 min 20 min			
Cart	ridge tempe	erature	+5°C up to +45°C			


Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical for concrete

Intended use
Working and curing time

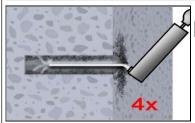
Annex B 3

Installation instructions

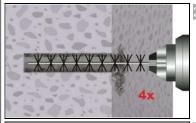
Drilling of the bore hole

Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment depth.


Drill bit diameter according to Table B1.

Aborted drill holes shall be filled with mortar.


Proceed with Step 2 (MAC or CAC).

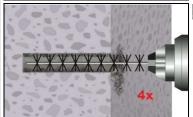
Manual Air Cleaning (MAC)

for drill hole diameter $d_0 \le 20$ mm and drill hole depth $h_0 \le 10d_{nom}$ with drilling method HD/CD

Attention! Remove standing water in the borehole before cleaning.
Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 2).

Attach brush WIT-RMB according to Table B2 to a drilling machine or a cordless screwdriver. Brush the bore hole minimum 4x over the entire embedment depth in a twisting motion (if necessary, use a brush extension WIT-RMB-L).

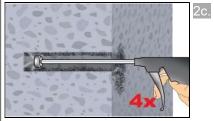
Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 2).


Compressed Air Cleaning (CAC): All diameter with drilling method HD/CD

Attention! Standing water in the bore hole must be removed before cleaning.

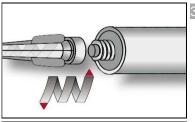
2a. Blow the bore hole clean minimum 4x with compressed air (min. 6 bar)

(Annex B 2) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)



Attach brush WIT-RMB according to Table B3 to a drilling machine or a cordless screwdriver. Brush the bore hole minimum 4x over the entire embedment depth in a twisting motion. (If necessary, a brush extension WIT-RMB-L shall be used.)

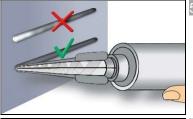
Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical for concrete


Intended use Installation instructions Annex B 4

Installation instructions (continuation)

Finally blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 2) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way. If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.


Screw on static-mixing nozzle CRW 14W, Fill & Clean and load the cartridge into an appropriate dispensing tool.

For every working interruption longer than the maximum working time t_{work} (Annex B 3) as well as for new cartridges, a new static-mixer shall be used.

Mark embedment depth on the anchor rod.

The anchor rod shall be free of dirt, grease, oil or other foreign material.

Not proper mixed mortar is not sufficient for fastening.

Dispense and discard mortar until an uniform grey colour is shown (at least 3 full strokes; for foil tube cartridges min. 6 strokes).

Starting at bottom of the hole and fill the hole up to approximately 2/3 with adhesive (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets Observe the temperature related working time t_{work} (Annex B 3).

Insert the anchor rod while turning slightly up to the embedment mark.

Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical for concrete

Intended use

Installation instructions (continuation)

Annex B 5

Installation instructions (continuation) Annular gap between anchor rod and base material must be completely filled with mortar. In case of push through installation the annular gap in the fixture must be filled with mortar also. Otherwise, the installation must be repeated starting from step 6 before the maximum working time twork has expired. Temperature related curing time t_{cure} (Annex B 3) must be observed. Do not move or load the fastener during curing time. +20°C 00:45 Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1). Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical

Annex B 6

for concrete

Intended use

Installation instructions (continuation)

Size				М8	M10	M12	M16	M20	M24
Cros	s section area	A _s	[mm ²]	36,6	58	84,3	157	245	353
Cha	racteristic tension resistance, Steel failure ¹)							
Stee	I, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141
Stee	I, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176
Stee	I, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282
Stair	nless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177
Stair	nless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247
Stair	nless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282
Cha	racteristic tension resistance, Partial safety	factor 2)							
Stee	I, Property class 4.6 and 5.6	γ _{Ms,N}	[-]			2	,0		
Stee	I, Property class 4.8, 5.8 and 8.8	$\gamma_{Ms,N}$	[-]			1	,5		
Stair	nless steel A2, A4 and HCR, class 50	$\gamma_{Ms,N}$	[-]			2,	86		
Stair	nless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]			1,	87		
Stainless steel A4 and HCR, class 80 $\gamma_{Ms,N}$ [-] 1,6									
Cha	racteristic shear resistance, Steel failure 1)								
E	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85
ran	Steel, Property class 5.6 and 5.8	V⁰ _{Rk,s}	[kN]	9 (8)	15 (13)	21	39	61	88
eve	Steel, Property class 8.8	V ^⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141
Without lever arm	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk s	[kN]	9	15	21	39	61	88
itho	Stainless steel A2, A4 and HCR, class 70	V⁰ _{Rk.s}	[kN]	13	20	30	55	86	124
>	Stainless steel A4 and HCR, class 80	V° _{Rk,s}	[kN]	15	23	34	63	98	141
_	Steel, Property class 4.6 and 4.8	M° _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449
ever arm	Steel, Property class 5.6 and 5.8	M ^⁰ Rk.s	[Nm]	19 (16)	37 (33)	65	166	324	560
ver	Steel, Property class 8.8	M⁰ _{Rk.s}	[Nm]	30 (26)	60 (53)	105	266	519	896
_	Stainless steel A2, A4 and HCR, class 50	M ^⁰ Rk,s	[Nm]	19	37	66	167	325	561
With	Stainless steel A2, A4 and HCR, class 70	∣ ^{IVI} °Rk,s	[Nm]	26	52	92	232	454	784
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896
Cha	racteristic shear resistance, Partial safety fa	ctor 2)							
Stee	I, Property class 4.6 and 5.6	γ _{Ms,V}	[-]			1,	67		
Stee	I, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]			1,	25		
Stair	nless steel A2, A4 and HCR, class 50 50	γ _{Ms,V}	[-]			2,	38		
Stainless steel A2, A4 and HCR, class 50 70 $\gamma_{Ms,V}$ [-] 1,56									
Stair	nless steel A4 and HCR, class 80	$\gamma_{Ms,V}$	[-]			1,	33		
S	/alues are only valid for the given stress area A _s . stress area A _s for hot-dip galvanised threaded rodin absence of national regulation						eaded rods	s with sma	aller

Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

				All anchors types and sizes			
Concrete cone fa	ilure		•				
Uncracked concre	te	k _{ucr,N}	[-]	11,0			
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}			
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}			
Splitting							
	h/h _{ef} ≥ 2,0			1,0 h _{ef}			
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$			
	h/h _{ef} ≤ 1,3			2,4 h _{ef}			
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}			

Characteristic values of tension loads under static and quasi-static action

Anchor size threaded rod						M10	M12	M16	M20	M24	
Steel fa	nilure										
Charac	teristic tension i	resistance	$N_{Rk,s}$	[kN]		A_s	• f _{uk} (or s	ee Table	C1)		
Partial factor			γ _{Ms,N}	[-]			See Ta	able C1			
Combi	ned pull-out a	and concrete failure	1								
Charac	teristic bond res	sistance in uncracked co	oncrete C	220/25							
<u>ο</u> Ι:	40°C/24°C		T		8,5	8,0	8,0	8,0	8,0	8,0	
range 		Dry and wet concrete									
ture II:	80°C/50°C		τ _{Rk,ucr}	[N/mm²]	6,5	6,0	6,0	6,0	6,0	6,0	
Temperature range ∷	40°C/24°C	Flooded bore hole	T (K, GO)		8,5	8,0	8,0	8,0	8,0	8,0	
Tem II:	80°C/50°C	Flooded bore flore			6,5	6,0	6,0	6,0	6,0	6,0	
	ing factor for co		Ψς	[-]			(f _{ck} / :	20) ^{0,2}			
	teristic bond res crete strength c	sistance depending on		τ _{Rk,ucr} =	Ψ _C • τ _{Rk,ucr,(C20/25)}						
	te cone failure						<u> </u>	- (,		
Releva	nt parameter				See Table C2						
Splittin	g										
Releva	nt parameter						See Ta	able C2			
Installa	tion factor										
Dry and	wet concrete		ν	[]	1,2						
Flooded	d bore hole		γinst	[-]	1,2						
\A/::4	h Injection sy	stem WIT-PM 200, WI	T-PM 20	0 express	WIT-P	M 200 tro	ppical				

Anchor size threaded rod			M8	M10	M12	M16	M20	M24
Steel failure without lever arm								
Characteristic shear resistance Steel, strength class 4.6 and 4.8	V ⁰ Rk,s	[kN]	0,6 ⋅ A _s ⋅ f _{uk} (or see Table C1)					
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ Rk,s	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)					
Partial factor	γ _{Ms,V}	[-]			See Ta	able C1		
Ductility factor	k ₇	[-]			1	,0		
Steel failure with lever arm	·							
Characteristic bending moment	M ⁰ Rk,s	[Nm]		1,2 •	Wel • fuk (o	r see Table	e C1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935
Partial factor	γ _{Ms,V}	[-]			See Ta	able C1		
Concrete pry-out failure								
Factor	k ₈	[-]			2	,0		
Installation factor	γ _{inst}	[-]			1	,0		
Concrete edge failure	I	<u> </u>						
Effective length of fastener	I _f	[mm]			min(h _{ef} ; 1	12 · d _{nom})		
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24
Installation factor	γ _{inst}	[-]		1	1,	,0		

Annex C 4

Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical

Characteristic values of shear loads under static and quasi-static action

for concrete

Performances

Table C5: Displacement under tension load ¹⁾									
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	
Uncracked concrete C20/25 under static and quasi-static action									
Temperature range I: 40°C/24°C	δ _{N0} -factor	[mm/(N/mm²)]	0,03	0,04	0,05	0,07	0,08	0,10	
	δ _{N∞} -factor	[mm/(N/mm²)]	0,07	0,08	0,08	0,08	0,08	0,10	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,05	
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,15	0,17	0,17	0,17	0,17	0,17	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C6: Displacement under shear load¹⁾

Anchor size threaded rod			М8	M10	M12	M16	M20	M24	
For uncracked concrete C20/25									
All temperature	δ _{v0} -factor	[mm/kN]	0,02	0,02	0,01	0,01	0,01	0,01	
ranges	δ _{V∞} -factor	[mm/kN]	0,03	0,02	0,02	0,01	0,01	0,01	

1) Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty}$ = $\delta_{V\infty}$ -factor · V;

Würth Injection system WIT-PM 200, WIT-PM 200 express, WIT-PM 200 tropical for concrete

Performances

Displacements under static and quasi-static action

Annex C 5